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Pseudounitary symmetry and the Gaussian pseudounitary ensemble of random matrices
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Employing the currently discussed notion of pseudo-Hermiticity, we define a pseudounitary group. Further,
we develop a random matrix theory that is invariant under such a group and call this ensemble of pseudo-
Hermitian random matrices the pseudounitary ensemble. We obtain exact results for the nearest-neighbor
level-spacing distribution for (232) PT-invariant Hamiltonian matrices that have forms,;Sln(1/S) near zero
spacing for three independent elements and;S for four independent elements. This shows a level repulsion in
a marked distinction with an algebraic formSb in the Wigner surmise. We believe that this paves the way for
a description of varied phenomena in two-dimensional statistical mechanics, quantum chromodynamics, and so
on.
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Postulates of quantum theory require the observable
be represented by Hermitian operators as only real eigen
ues correspond to measurements. However, it has rec
been emphasized that there are certain Hamiltonians des
ing the quantum systems that possess real eigenvalues
though they are not Hermitian. Many of these systems
invariant under space-time reflection, i.e., invariant unde
joint action of parityP and time reversalT @1–3#. In this
context, the concept of pseudo-Hermiticity was introduc
@4#, where it was shown thatPT symmetry is a special cas
of pseudo-Hermiticity. Pseudo-Hermiticity of an operator
a matrix O is simply defined through the conditionO†

5hOh21 with h as a metric and ‘‘†’’ representing the usua
adjoint or conjugate transpose. Although a pseudo-Hermi
Hamiltonian may also possess complex-conjugate pairs
eigenvalues, we restrict our discussion to the case where
spectrum is real. Remarkably, it was subsequently shown
non-PT invariant systems that possess real eigenvalues
also pseudo-Hermitian@5#. Physical situations of great inte
est belong to the above discussion. This includes tw
dimensional statistical mechanics where parity and tim
reversal are broken~preserving PT) @6–8#, quantum
chromodynamics where chiral ensembles are used to
scribe the statistical properties of lattice Dirac operator@9#,
spin-rotation coupling leading to an anomalousg value for
muon @10#, and related fields. In this paper, we presen
random matrix theory that describes spectral fluctuation
systems that are pseudo-Hermitian and pseudounitarily
variant. The two aspects that are particularly notable are
simplicity of this description and the fact that this theory
natural when parity or~and! time reversal is~are! violated.

The problem of two-dimensional statistical mechanics
obviously connected with anyon physics and hence to
behavior of an electron in an Aharonov-Bohm medium@11#,
i.e., a medium filled with nonquantized magnetic fluxe
reminiscent of the theory of fractional quantum Hall effe
@12#. Important to note here is also another motivation t
stems from a speculation due to Nambu that this might se
as a model for theoretical ideas such as the quark con
ment in a medium of monopoles@13#. In this context, it is
known that the spectral fluctuations of an Aharonov-Bo
billiard exhibits an interpolating behavior with respect to t
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strength of the flux line@14#. These billiards are experimen
tally realized in terms of quantum dots in the presence of fl
lines. It is of great interest to find an appropriate rando
matrix description for suchPT-invariant systems. Pseudo
Hermiticity appears in several contexts. It is instructive
note that in the mean-field random phase approximation
scription of nuclei@15#, the stability matrix leading to an
eigenvalue problem can be checked to be pseudounitar
context of the regularization of quantum field theorie
pseudo-Hermiticity and the associated improper metric w
used by Dirac@16#, Pauli@17#, and particularly by Gupta and
Bleuler @18#, and others@19#. Let us first establish the
pseudounitary symmetry.

Consider vectorsx andy residing in a vector spaceV and
a fixed metrich. In this vector space, we define a pseud
inner product (h norm!, which can be written in the usua
quantum mechanical notation as^xuhy&. We shall consider
symmetry transformations that preserve theh norm between
the vectors. We consider the Cayley formD5eiG as a sym-
metry transformation acting onx, y, where G is pseudo-
Hermitian in accordance withhGh215G†. By noting an
interesting feature ofD:

D†5e2 iG†
5e2 i hGh21

5he2 iGh215hD21h21, ~1!

let us callD as pseudounitary with respect toh. h equal to
unity makesD unitary trivially. To establish thatD is indeed
a symmetry transformation, we need to show that the tra
formation preserves theh norm and a consistently define
matrix element.

Let us assume thatx(y)→x8(y8)5Dx(Dy). Then, the
pseudounitary symmetry is defined by preserving
pseudonorm

^x8uhy8&5^DxuhDy&5^xuhy&. ~2!

In proving Eq. ~2!, use e2 iG†
heiG5e2 iG†

heiGh21h

5e2 iG†
eiG†

h5h. Under the same pseudounitary transfo
mation, the matrix element of an arbitrary operatorA trans-
forms as

^x8uhA8uy8&5^xuhAuy& if DAD215A8. ~3!
©2003 The American Physical Society06-1
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Let us now prove that pseudounitary matrices form a gro
under matrix multiplication. For closure, letD1 and D2 be
two pseudounitary matrices.D1D2 is pseudounitary becaus
h21(D1D2)†h5h21D2

†hh21D1
†h5(D1D2)21. It easily fol-

lows that D21 is pseudounitary with respect toh if D is
pseudounitary:h21(e2 iG)†h5ei h21G†h5eiG. The identity
matrix acts as the unit element of the symmetry transform
tion. Finally, since the associativity is guaranteed, theN
3N pseudounitary matrices form a pseudounitary group
orderN, PU(N).

In the following, to keep the proceedings simple and e
plicit, we consider Hamiltonians in their matrix represen
tions. Also, in the spirit of the original work of Wigner@20#,
we consider (232) matrices as they bring out most of th
essence. In this context, there is a recent generalizatio
Wigner surmise for 232 matrices@21#. Thus, we concen-
trate on PU~2! and consider the following pseudo-Hermitia
matrix:

H5$H i j %5F a 2 ib

ic a G , ~4!

a,b,c being real. Consequently,eiH will be a pseudounitary
matrix. For the above matrices, a metric is

d5F0 21

1 0 G . ~5!

This metric may be interpreted as the parity operatorP, and
the complex conjugationK0 as time-reversal operatorT.
With these operations, it may be verified thatH is PT invari-
ant in addition to beingP-pseudo-Hermitian. Besides thes
commutingP and T operators, if we chooseT as the Pauli
matrix times the complex conjugation,sxK0, they do not
commute, preserving other conclusions.

We want to emphasize thatd need not be unique. Fo
instance, it could besy , diagonal matrices diag(c/b,1),
diag(Ac/b, Ab/c), . . . . Further, we insist that the metri
should be independent of the matrix elements and we
such a metric ‘‘secular.’’ This also disentangles the me
with probability distribution of the matrix elements~13!, in
anticipation with the subsequent discussion on random
trices.

This group admits three generators and an identity, vi

r15F1 0

i 21G , r25F1 2 i

0 21G ,
~6!

r35F21 0

0 1G , I5F1 0

0 1G .
Note thatH5aI1cr11br21(b1c)r3. It is interesting to
see thatr1 andr2 are pseudo-Hermitian and pseudounita
possessing eigenvalues61. It may be recalled that the Pau
matricessx and sy are Hermitian and unitary. Further, th
generators satisfy the following important properties:

r1
25r2

25r3
25I ,
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@ri ,rj #5(
k

Ci j
k rk , ~7!

with C12
1 5C12

2 5C23
2 5C23

3 5C31
1 5C31

3 52 and C12
3 55. All

the structure constants can be found with the help of co
mutation relations and symmetry properties, and they t
out to be65, 62, or 0. Interestingly, the following relation
between the structure constants hold:

Ckl
j 52Clk

j ,
~8!

(
m51

3

@Ckl
mCjm

s 1Cl j
mCkm

s 1Cjk
mClm

s #50,

thus making it a Lie group and defining a Lie algebra@23#.
We now consider a HamiltonianH, which is diagonaliz-

able byD, i.e.,

H5DFE1 0

0 E2
GD21. ~9!

The eigenvalues ofH area6Abc (b andc are of the same
sign!. The corresponding matrix,D,

D5F 1 i /r

ir 1 G , ~10!

is pseudounitary under the metric

h5F0 1

1 0G . ~11!

Had the seculard been diagonal,h would have been same a
d. The matrixD generates an ensemble of pseudo-Hermit
matrices through Eq.~9! which have the general form~4!
involving three independent parameters. The most gen
form of H would, of course, involve four independent p
rameters. We return to this point after illustrating the natu
of spectral fluctuations for Eq.~4!.

The eigenvalues are

E65a6F c

2r
1

br

2 G , ~12!

wherer 5Ac/b(0<r<`).
Consider that the matrixH is drawn from an ensemble o

random matrices with a Gaussian distribution given by@20#

P~H!5Ne2(1/2s2)tr(H†H). ~13!

Accordingly, the joint probability distribution ofa,b,c is

P~a,b,c!5
1

2~ps2!3/2
e2(1/2s2)[2a21b21c2] . ~14!

From Eqs.~4! and ~9!, we have the following relations:
6-2
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a5
E11E2

2
, b5

E12E2

2r
, c5

r ~E12E2!

2
.

~15!

The JacobianJ connecting (a,b,c) and (E1 ,E2 ,r ) is uE1

2E2u/2r . With these, the joint probability distribution func
tion ~JPDF! of eigenvalues is

P~E1 ,E2!5
uE12E2u

2~ps2!3/2
K0S ~E12E2!2

4s2 D e2(E11E2)2/4s2
.

~16!

Following the Dyson-Coulomb gas analogy, this JPDF c
be written as an equilibrium distribution of two interactin
particles with a partition functionP(E1 ,E2)→Z(x1 ,x2)
5e2bH(x1 ,x2). It is interesting to note thatH has a potential
term involving the logarithm of the modified Bessel functio
along with the familiar harmonic confinement and the tw
dimensional Coulomb potential. 4s2 plays the role of in-
verse scaled temperature.

Integrating with respect toE2 gives the average density
shown in Fig. 1. This is not amenable to an analytica
closed form.

Perhaps the most well-studied characterizer is the nea
neighbor level spacing distribution,P(S). This gives the fre-
quency with which a certain spacing between adjacent le
occurs. For the Wigner-Dyson ensembles,P(S);Sb0e2gS2

,
whereb0 is 1, 2, and 4 for the orthogonal, unitary, and sy
plectic ensembles, respectively. A wide variety of syste
display universal properties possessed by random matrix
sembles as can be seen in Refs.@20,24,25#. However, there
are systems that display intermediate statistics@26–28#.
These systems range from examples of billiards in polygo
enclosures, three-dimensional Anderson model at the m
insulator transition point, and so on. On the other hand, th
have been important developments on non-Hermitian
sembles since long where the eigenvalues are com
@20,25#, and where an ensemble of unstable states is con
ered@29#. Clearly, the ensemble developed here does not
into any of the known categories and, indeed, displays so
different features as shown below.

FIG. 1. The average level density of an ensemble of 232 ran-
dom Gaussian pseudounitary ensembles is shown here.
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The spacing distributionP(S) is given in terms of the
JPDF by

P~S!5E
2`

` E
2`

`

P~E1 ,E2!d~S2uE12E2u!dE1dE2

5
S

ps2
K0S S2

4s2D . ~17!

This result is distinctly different and very interesting~Fig. 2!,
particularly for its behavior near zero spacing. NearS50,
the probability distribution varies asSln1/S. This follows
from the asymptotic properties of the modified Bessel fu
tion.

The question now is to establish the generality of E
~17!. Having made the metrics~5! and ~11! secular, the in-
dependence of Eq.~17! from the metric~s! trivially follows.
We find that@30# for other forms of three-parameter pseud
Hermitian Hamiltonian matricesH, viz.,

Fa1 ib c

c a2 ibG , Fa1c ib

ib a2cG ,
Fa1 ib 2 ic

ic a2 ibG ~c2.b2!, Fa 6b

c a G ~7bc,0!,

~18!

we get Eq.~17! for P(S) with distribution ~13!.
The root of this generality lies in the mathematical for

of the level spacing which is real only conditionally in co
trast with the absolute reality for the Wigner-Dyson e
sembles@20#. That this aspect is basically due to the pseud
Hermitian character of the matrices is worth keeping
mind.

We now return to the case of pseudo-Hermitian Ham
tonian matrices with four independent parameters and
eigenvalues. There are two general cases which are exh
tive, viz., where the diagonal elements are complex con
gate and where they are real. Once again, the level spa

FIG. 2. The nearest-neighbor level-spacing distribution is sho
here. For comparison, the results corresponding to the Wig
Dyson ensembles corresponding to orthogonal and unitary sym
tries are also shown, whereas the level repulsion is linear and
dratic in the orthogonal and unitary ensembles, here it is of the fo
Sln(1/S), as shown in the inset. This then suggests a different u
versality.
6-3
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will be real only conditionally. We find that@30# the spacing
distribution behaves as;S exp(S2)erfc(S) near zero spac
ing, where erfc(x) is the complementary error function. Th
degree of level repulsion is linear here. Most importan
whenever these four-parameter Hamiltonians reduce to th
parameter cases, the result~17! is recovered for all the case
when pseudonorm is indefinite. We would like to remark th
the spacing distribution;S2e2S2

for any four-parameter
Hermitian matrix reduces to;Se2S2

for the Hermitian ma-
trix with three parameters, a form that is very similar~but not
identical! to that for real symmetric matrices.

It is well known that when a quantum system violat
time-reversal invariance, the degree of level repulsion is t
In addition, if parity is broken, the degree of level repulsi
becomes one, as if it is a restoration of time-reversal inv
ance. This scenario is when there are four statistically in
pendent parameters. Further, when there remain three i
pendent parameters, the level repulsion becom
nonalgebraic@Sln1/S#.

Finally, we point out an aspect of general importance
countered on many occasions in many-body theory. To g
one concrete example, in the theory of collective excitatio
of fermionic systems, a mean-field description is used wh
a collective state is first expressed in terms of particle-h
04510
,
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excitations @15#. Here, one generally encounters a mat
equation such asHC5lF, with H a Hermitian or unitary
operator. The above problem may be transformed into
eigenvalue problem forH8, i.e., H8F5lF, with H8 a
pseudo-Hermitian or pseudounitary operator. With this, th
are many results immediately possible. First of all, the eig
values will either be real, complex-conjugate pairs, unim
dular, or they occur in pairs such that the product of eig
values is unimodular@22#. Second, the statistical propertie
of the eigenvalues related to collective excitations will
distributed in accordance with the results obtained for
Gaussian pseudounitary ensemble~GPUE! above.

The above results are found for 232 pseudo-Hermitian
matrices. ForN3N matrices, invariant under PU~N!, where
not much is known, we conjecture that the fluctuation pro
erties may have a similar form as above, taking cue from
Wigner surmise forN3N matrices. As discussed earlier, th
general results found here may suggest a different univer
ity corresponding to systems that are pseudounitarily inv
ant. In such systems, parity and time reversal may be in
vidually broken, preservingPT. This universality might also
include those pseudo-Hermitian quantum systems wherePT
is broken. The examples discussed include quantum chro
dynamics, two-dimensional statistical mechanics, and so
,
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