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Pseudounitary symmetry and the Gaussian pseudounitary ensemble of random matrices
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Employing the currently discussed notion of pseudo-Hermiticity, we define a pseudounitary group. Further,
we develop a random matrix theory that is invariant under such a group and call this ensemble of pseudo-
Hermitian random matrices the pseudounitary ensemble. We obtain exact results for the nearest-neighbor
level-spacing distribution for ( 2) PT-invariant Hamiltonian matrices that have forms$In(1/S) near zero
spacing for three independent elements arféifor four independent elements. This shows a level repulsion in
a marked distinction with an algebraic for®f in the Wigner surmise. We believe that this paves the way for
a description of varied phenomena in two-dimensional statistical mechanics, quantum chromodynamics, and so
on.
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Postulates of quantum theory require the observables tstrength of the flux ling14]. These billiards are experimen-
be represented by Hermitian operators as only real eigenvalally realized in terms of quantum dots in the presence of flux
ues correspond to measurements. However, it has recentliyies. It is of great interest to find an appropriate random
been emphasized that there are certain Hamiltonians descriatrix description for suchPT-invariant systems. Pseudo-
ing the quantum systems that possess real eigenvalues eviggrmiticity appears in several contexts. It is instructive to
though they are not Hermitian. Many of these systems ar@ote that in the mean-field random phase approximation de-
invariant under space-time reflection, i.e., invariant under &cription of nuclei[15], the stability matrix leading to an
joint action of parity’? and time reversal [1-3]. In this  eigenvalue problem can be checked to be pseudounitary. In
context, the concept of pseudo-Hermiticity was introducedcontext of the regularization of quantum field theories,
[4], where it was shown th&®T symmetry is a special case Pseudo-Hermiticity and the associated improper metric was
of pseudo-Hermiticity. Pseudo-Hermiticity of an operator orused by Dira¢16], Pauli[17], and particularly by Gupta and
a matrix O is simply defined through the conditio®' Bleuler [18], and others[19]. Let us first establish the
= yOn ! with 5 as a metric and *" representing the usual Pseudounitary symmetry.
adjoint or conjugate transpose. Although a pseudo-Hermitian Consider vectorg andy residing in a vector spacg and
Hamiltonian may also possess complex-conjugate pairs & fixed metricy. In this vector space, we define a pseudo—
eigenvalues, we restrict our discussion to the case where th@ner product ¢ norm), which can be written in the usual
spectrum is real. Remarkably, it was subsequently shown thauantum mechanical notation &s 77y). We shall consider
non-PT invariant systems that possess real eigenvalues agymmetry transformations that preserve thaorm between
also pseudo-Hermitiaf5]. Physical situations of great inter- the vectors. We consider the Cayley fobr=€e'® as a sym-
est belong to the above discussion. This includes twometry transformation acting or, y, where G is pseudo-
dimensional statistical mechanics where parity and timeHermitian in accordance wityGy *=G'. By noting an
reversal are broken(preserving PT) [6-8], quantum interesting feature ob:
chromodynamics where chiral ensembles are used to de- - . _
scribe the statistical properties of lattice Dirac oper&@dr Di=e G =e M7 =y Sy 1=yD" 171, (1
spin-rotation coupling leading to an anomalaysalue for
muon [10], and related fields. In this paper, we present dét us callD as pseudounitary with respect #p # equal to
random matrix theory that describes spectral fluctuations itinity makesD unitary trivially. To establish thab is indeed
systems that are pseudo-Hermitian and pseudounitarily i@ symmetry transformation, we need to show that the trans-
variant. The two aspects that are particularly notable are théormation preserves thg norm and a consistently defined
simplicity of this description and the fact that this theory is matrix element.
natural when parity ofand time reversal igare violated. Let us assume that(y)—x’'(y’)=Dx(Dy). Then, the

The problem of two-dimensional statistical mechanics ispseudounitary symmetry is defined by preserving the
obviously connected with anyon physics and hence to th@seudonorm
behavior of an electron in an Aharonov-Bohm mediii,

i.e., a medium filled with nonquantized magnetic fluxes, (X' py")=(Dx| #Dy) = (x| ny). 2
reminiscent of the theory of fractional quantum Hall effect _ SV
[12]. Important to note here is also another motivation thain proving Eg. (2), use e ne'C=e"' peCy 1y
stems from a speculation due to Nambu that this might serve- e“GTe‘GUF n. Under the same pseudounitary transfor-
as a model for theoretical ideas such as the quark confingnation, the matrix element of an arbitrary operatotrans-
ment in a medium of monopold4.3]. In this context, it is forms as

known that the spectral fluctuations of an Aharonov-Bohm

billiard exhibits an interpolating behavior with respect to the (X'|pA'ly"y=(x|pAly) if DAD 1=A". ©)

—ict
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Let us now prove that pseudounitary matrices form a group ‘
under matrix multiplication. For closure, 1&; and D, be Lo :Pj]ZEK Ciipx ()
two pseudounitary mfltricealTDz is pseudounitary because
7 (D;D,)"p=n"1D)yy DIy=(D,D,) L. It easily fol- - 1 _ (2 _ (2 _ (3 _ (1 _~3_ 3 _
lows thatD ™! is psezudounitr:lry with respect tg if D is m;hSt?&é;%i;ﬁéf;ﬁ;i;ﬁ36; %J;dzw?t?]dtﬁézﬁesl' Al

. - gt S p of com-
pseudounitary:p (e '®)Ty=e'7 ¢ 7=¢'®. The identity mutation relations and symmetry properties, and they turn
matrix acts as the unit element of the symmetry transformagut to be+5, +2, or 0. Interestingly, the following relations
tion. Finally, since the associativity is guaranteed, te petween the structure constants hold:
X N pseudounitary matrices form a pseudounitary group of

orderN, PU(N). c{d: - ka ,
In the following, to keep the proceedings simple and ex- )
plicit, we consider Hamiltonians in their matrix representa- 3
tions. Also, in the spirit of the original work of Wign¢20], Z [cfk“lcjsm+ C{‘j‘ bt c;‘l‘(cfm]:o,
m=1

we consider (X2) matrices as they bring out most of the
essence. In this context, there is a recent generalization of o i . )
Wigner surmise for X2 matrices[21]. Thus, we concen- thus making it a Lie group and defining a Lie algeb2a].

trate on PW2) and consider the following pseudo-Hermitian e now consider a HamiltoniaH, which is diagonaliz-
matrix: able byD, i.e.,

a -—ib

H={Hi}= , (4) H=D

E. 0] |
o £ D" (9)

ic a

a,b,c being real. Consequentlg!™ will be a pseudounitary The eigenvalues dff area+ \bc (b andc are of the same

matrix. For the above matrices, a metric is sign). The corresponding matrixD,

0 -1 1 ilr

o= ©) D= 10

10 ir 1/ (10
This metric may be interpreted as the parity operd&pand ;g pseudounitary under the metric
the complex conjugatioriC, as time-reversal operatdr.
With these operations, it may be verified tivats PT invari- 0 1
ant in addition to beingP-pseudo-Hermitian. Besides these 7= . (12)
commuting’? and 7 operators, if we choos& as the Pauli 10

matrix times the complex conjugatiom;, Xy, they do not ,
commute, preserving other conclusions. Had the secula been diagonaly would have been same as

We want to emphasize tha? need not be unique. For o. The matrixD generates an ensemble of pseudo-Hermitian
instance, it could ber,, diagonal matrices diag(b,1), matrices through Eq(9) which have the general forrt¥)

diag(yc/b, \bic), ... Further, we insist that the metric involving three independent parameters. The most general

should be independent of the matrix elements and we cafPrm of H would, of course, involve four independent pa-

such a metric “secular.” This also disentangles the metric'@meters. We return to this point after illustrating the nature
with probability distribution of the matrix elementd3), in  ©f spectral fluctuations for Edd).

anticipation with the subsequent discussion on random ma- The eigenvalues are

trices.
This group admits three generators and an identity, viz., E.—a+ %4_ %} (12)
1 0 1 —i
P1= i -1l pP2= 0o -1/ wherer = \/c/b(0=<r=w®).
©) Consider that the matril is drawn from an ensemble of
1 0 1 0 random matrices with a Gaussian distribution given 2g]
Ps=l o 1" "Tlo 1}' P(H):Ne—(l/bz)tr(HTH). (13)

Note thatH=al +cp;+bp,+ (b+c)ps. It is interesting to
see thafp; andp, are pseudo-Hermitian and pseudounitary,
possessing eigenvaluesl. It may be recalled that the Pauli

Accordingly, the joint probability distribution od,b,c is

matriceso, and o, are Hermitian and unitary. Further, the _ 1 —(1/209)[2a2+ b2+ 2
2 Ty el . P(a,b,c) e . (14
generators satisfy the following important properties: 2(mwa?)%?
Pingngz l From Egs.(4) and(9), we have the following relations:
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0‘0_4 - _'2 _'1 cl) 1' 2' ! FIG. 2. The nearest-neighbor level-spacing distribution is shown
here. For comparison, the results corresponding to the Wigner-
E Dyson ensembles corresponding to orthogonal and unitary symme-
FIG. 1. The average level density of an ensemble sf22ran-  (ries are also shown, whereas the level repulsion is linear and qua-
dom Gaussian pseudounitary ensembles is shown here. dratic in the orthogonal and unitary ensembles, here it is of the form
SIn(1/S), as shown in the inset. This then suggests a different uni-
E.+E_ E.—E_ rE,—E_) versality.
a=——F—, b=—F—, c=——FF——.
2 2r 2 The spacing distributiorP(S) is given in terms of the

15 JpDF by

The Jacobiard connecting é,b,c) and €, ,E_,r) is |E, o e
—E_|/2r. With these, the joint probability distribution func-  p(s)= f f P(E.,E_)8(S—|E,—E_|)dE,dE_
tion (JPDBH of eigenvalues is —o) o

_E )2 S ?
(E+—E-) )e(E++E)2/4<r2_ =—Ko< ) (17

E.—E_
P(E+,E_)—| +—E|

_2(,”.0_2)3/2 0 40_2 770'2 40’2

(16 This result is distinctly different and very interestitfgg. 2),
Following the Dyson-Coulomb gas analogy, this JPDF carparticularly for its behavior near zero spacing. N&a#O0,
be written as an equilibrium distribution of two interacting the probability distribution varies aSIn1/S. This follows
particles with a partition functiorP(E, ,E_)— Z(X1,X5) from the asymptotic properties of the modified Bessel func-
=e PHOaX2 |t s interesting to note thak{ has a potential ~tion.
term involving the logarithm of the modified Bessel function ~ The question now is to establish the generality of Eq.
along with the familiar harmonic confinement and the two-(17). Having made the metric&) and (11) secular, the in-
dimensional Coulomb potential.o# plays the role of in- dependence of Eq17) from the metrics) trivially follows.
verse scaled temperature. We find that[30] for other forms of three-parameter pseudo-

Integrating with respect t&_ gives the average density, Hermitian Hamiltonian matrices!, viz.,

shown in Fig. 1. This is not amenable to an analytically

closed form. atib ¢ atc b
Perhaps the most well-studied characterizer is the nearest- c a—ib|’ | ib a-c/
neighbor level spacing distributioR(S). This gives the fre-
guency with which a certain spacing between adjacent levels [a+ib —ic 1o a =*b B
occurs. For the Wigner-Dyson ensemblB¢S) ~ SPoe™ 75", ic  a—ip| (€=b9 (+bc<0),

wheref, is 1, 2, and 4 for the orthogonal, unitary, and sym- (18
plectic ensembles, respectively. A wide variety of systems

display universal properties possessed by random matrix enve get Eq.(17) for P(S) with distribution (13).

sembles as can be seen in R¢0,24,25. However, there The root of this generality lies in the mathematical form
are systems that display intermediate statis{i26—28. of the level spacing which is real only conditionally in con-
These systems range from examples of billiards in polygonairast with the absolute reality for the Wigner-Dyson en-
enclosures, three-dimensional Anderson model at the metadembleg20]. That this aspect is basically due to the pseudo-
insulator transition point, and so on. On the other hand, therelermitian character of the matrices is worth keeping in
have been important developments on non-Hermitian enmind.

sembles since long where the eigenvalues are complex We now return to the case of pseudo-Hermitian Hamil-
[20,25, and where an ensemble of unstable states is considenian matrices with four independent parameters and real
ered[29]. Clearly, the ensemble developed here does not falkigenvalues. There are two general cases which are exhaus-
into any of the known categories and, indeed, displays somgve, viz., where the diagonal elements are complex conju-
different features as shown below. gate and where they are real. Once again, the level spacing
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will be real only conditionally. We find thdB0] the spacing excitations[15]. Here, one generally encounters a matrix
distribution behaves as S exp&)erfc(S) near zero spac- equation such asl'=x®, with H a Hermitian or unitary
ing, where erfcx) is the complementary error function. The operator. The above problem may be transformed into an
degree of level repulsion is linear here. Most importantly,eigenvalue problem foH’, i.e., H'®=\®, with H' a
whenever these four-parameter Hamiltonians reduce to thregseudo-Hermitian or pseudounitary operator. With this, there
parameter cases, the resil?) is recovered for all the cases are many results immediately possible. First of all, the eigen-
when pseudonorm is indefinite. We would like to remark that,gyes will either be real, complex-conjugate pairs, unimo-
the spacing distribution~S”e % for any four-parameter dular, or they occur in pairs such that the product of eigen-
Hermitian matrix reduces to-Se™S for the Hermitian ma-  values is unimodulaf22]. Second, the statistical properties
trix with three parameters, a form that is very similaut not ~ of the eigenvalues related to collective excitations will be
identica) to that for real symmetric matrices. distributed in accordance with the results obtained for the
It is well known that when a quantum system violatesGaussian pseudounitary ensem@@@UE) above.
time-reversal invariance, the degree of level repulsion is two. The above results are found forx2 pseudo-Hermitian
In addition, if parity is broken, the degree of level repulsionmatrices. FONXN matrices, invariant under RN), where
becomes one, as if it is a restoration of time-reversal invarinot much is known, we conjecture that the fluctuation prop-
ance. This scenario is when there are four statistically indeerties may have a similar form as above, taking cue from the
pendent parameters. Further, when there remain three ind@vigner surmise folN XN matrices. As discussed earlier, the
pendent parameters, the level repulsion becomegeneral results found here may suggest a different universal-
nonalgebraid SIn1/S]. ity corresponding to systems that are pseudounitarily invari-
Finally, we point out an aspect of general importance enant. In such systems, parity and time reversal may be indi-
countered on many occasions in many-body theory. To giveidually broken, preservin@T. This universality might also
one concrete example, in the theory of collective excitationsnclude those pseudo-Hermitian quantum systems wiRére
of fermionic systems, a mean-field description is used wheré broken. The examples discussed include quantum chromo-
a collective state is first expressed in terms of particle-holelynamics, two-dimensional statistical mechanics, and so on.
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